Realization for justification logics via nested sequents: Modularity through embedding

نویسندگان

  • Remo Goetschi
  • Roman Kuznets
چکیده

Justification logics are refinements of modal logics, where justification terms replace modalities. Modal and justification logics are connected via the so-called realization theorems. We develop a general constructive method of proving the realization of a modal logic in an appropriate justification logic by means of cut-free modal nested sequent systems. We prove a constructive realization theorem that uniformly connects every normal modal logic formed from the axioms d, t, b, 4, and 5 with one of its justification counterparts. We then generalize the notion of embedding introduced by Fitting for justification logics, which enables us to extend our realization theorem to all natural justification counterparts. As a result, we obtain a modular realization theorem that provides several justification counterparts based on various axiomatizations of a modal logic. We also prove that these justification counterparts realize the same modal logic if and only if they belong to the same equivalence class induced by our embedding relation, thereby demonstrating that the embedding provides the right level of granularity among justification logics. © 2012 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realization Theorems for Justification Logics: Full Modularity

Justification logics were introduced by Artemov in 1995 to provide intuitionistic logic with a classical provability semantics, a problem originally posed by Gödel. Justification logics are refinements of modal logics and formally connected to them by so-called realization theorems. A constructive proof of a realization theorem typically relies on a cut-free sequent-style proof system for the c...

متن کامل

A Syntactic Realization Theorem for Justification Logics

Justification logics are refinements of modal logics where modalities are replaced by justification terms. They are connected to modal logics via so-called realization theorems. We present a syntactic proof of a single realization theorem that uniformly connects all the normal modal logics formed from the axioms d, t, b, 4, and 5 with their justification counterparts. The proof employs cut-free...

متن کامل

Proof Theory for Indexed Nested Sequents

Fitting’s indexed nested sequents can be used to give deductive systems to modal logics which cannot be captured by pure nested sequents. In this paper we show how the standard cut-elimination procedure for nested sequents can be extended to indexed nested sequents, and we discuss how indexed nested sequents can be used for intuitionistic modal logics.

متن کامل

Modal interpolation via nested sequents

The main method of proving the Craig Interpolation Property (CIP) constructively uses cut-free sequent proof systems. Until now, however, no such method has been known for proving the CIP using more general sequent-like proof formalisms, such as hypersequents, nested sequents, and labelled sequents. In this paper, we start closing this gap by presenting an algorithm for proving the CIP for moda...

متن کامل

Labelled Tree Sequents, Tree Hypersequents and Nested (Deep) Sequents

We identify a subclass of labelled sequents called “labelled tree sequents” and show that these are notational variants of tree-hypersequents in the sense that a sequent of one type can be represented naturally as a sequent of the other type. This relationship can be extended to nested (deep) sequents using the relationship between tree-hypersequents and nested (deep) sequents, which we also sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 163  شماره 

صفحات  -

تاریخ انتشار 2012